MATH 1C PRACTICAL SPRING 2023 RECITATION 2

ALAN DU

1. DIFFERENTIATION

Reference: Chapter 9 of Walter Rudin's *Principles of Mathematical Analysis*. Recall that a single-variable function f is differentiable at x if the limit

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists. In other words, there exists a real number f'(x) such that

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - f'(x)h|}{|h|} = 0.$$

We can regard f'(x) as a linear function which takes a number h and gives f'(x)h, and this function is special because it approximates the behavior of f(x+h) - f(x).

Definition 1.1. Let $E \subset \mathbb{R}^n$ be open, $f: E \to \mathbb{R}^m$, and $x \in E$. If there exists a linear map $A: \mathbb{R}^n \to \mathbb{R}^m$ such that

(1.2)
$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - A(h)\|}{\|h\|} = 0,$$

then we say that f is differentiable at x, and we write $Df_x = f'(x) = A$. We call Df_x the (total) derivative or the differential of f at x.

The derivative is unique if it exists.

Theorem 1.3. Suppose f is differentiable at x, and equation (1.2) holds with $A = A_1$ and $A = A_2$. Then $A_1 = A_2$.

Proposition 1.4. Equation (1.2) can be written in the form

$$f(x+h) - f(x) = f'(x)h + r(h)$$

for some remainder r(h) satisfying

$$\lim_{h \to 0} \frac{\|r(h)\|}{\|h\|} = 0$$

Thus f is continuous at any point which f is differentiable.

The derivative satisfies the usual chain rule, but we have composition of linear maps instead of multiplication of real numbers.

Date: April 13, 2023.

Theorem 1.5. Let $f : \mathbb{R}^n \to \mathbb{R}^m$, $g : \mathbb{R}^m \to \mathbb{R}^k$, and suppose f is differentiable at x_0 , g is differentiable at $f(x_0)$. Then the mapping $g \circ f$ is differentiable at x_0 and

$$F'(x_0) = g'(f(x_0))f'(x_0).$$

Definition 1.6. Let $f : \mathbb{R}^n \to \mathbb{R}$, $\{e_1, \ldots, e_n\}$, the standard basis of \mathbb{R}^n , Define the partial derivative of f with respect to x_i at the point x as

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t},$$

provided the limit exists.

We can think of a function of a single variable $t \mapsto f(x + te_i)$, then the partial derivative is the derivative of this function at the point 0. We can also interpret the partial derivative as holding the other components of x constant and considering the single-variable derivative of f as we vary x_i .

Exercise 1. Let $f(x, y, z) = 2x + y^2 x$, compute the partial derivatives of f.

For a function $f : \mathbb{R}^n \to \mathbb{R}^m$, we can consider the partial derivatives of the components of $f = (f_1, \ldots, f_m), \frac{\partial f_i}{\partial f_i}$.

Theorem 1.7. Suppose f is differentiable at a point x, then the partial derivatives $\frac{\partial f_i}{\partial f_i}(x)$ exist, and

$$f'(x)e_j = \left(\frac{\partial f_1}{\partial x_j}(x), \dots, \frac{\partial f_m}{\partial x_j}(x)\right).$$

Definition 1.8. As a consequence of the previous theorem, the matrix form of f'(x) with respect to the standard bases is given by the $m \times n$ matrix

$$[f'(x)] = \operatorname{Jac}(f)(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix}$$

This is called the Jacobian of f at x. The Jacobian may exist even when the function is not differentiable.

Exercise 2. Use the chain rule to find $(f \circ g)'(-2, 1)$ for $f(u, v, w) = (v^2 + uw, u^2 + w^2, u^2v - w^3), g(x, y) = (xy^3, x^2 - y^2, 3x + 5y).$

In the case m = 1, the Jacobian is a $1 \times n$ vector usually called the gradient of f, denoted ∇f .

Definition 1.9. Suppose all the partial derivatives of f at x exist, and let $v \in \mathbb{R}^n$, then the directional derivative of f in the direction v is

$$\operatorname{Jac}(f)(x)v.$$

In the case m = 1, this is just $\nabla f(x) \cdot v$.

Exercise 3. Find a direction in which the directional derivative of

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

at (1, 1) is equal to 0.

Theorem 1.10. If all the partial derivatives $\frac{\partial f_i}{\partial x_j}(x)$ of f exist and are continuous at x, then f is differentiable (in fact, continuously differentiable) at x.

Exercise 4. Let f(0,0) = 0, and

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$.

Prove that the partial derivatives of f exist at every point of \mathbb{R}^2 , but f is not continuous at (0,0).

Definition 1.11. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be continuously differentiable, and let S be the surface consisting of those (x, y, z) satisfying f(x, y, z) = k for k a constant. If $\nabla f(x_0, y_0, z_0) \neq 0$ for $(x_0, y_0, z_0) \in S$, the tangent plane of S at (x_0, y_0, z_0) is defined by the equation

$$abla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0.$$