MATH 1C PRACTICAL SPRING 2023 RECITATION 1

ALAN DU

1. EUCLIDEAN SPACE

Definition 1.1. The standard inner product on \mathbb{R}^n is defined as

 $x \cdot x = \langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

for any $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$.

The norm of any vector in \mathbb{R}^n is defined as

$$||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + \dots + x_n^2}.$$

The distance between any two vectors x, y is defined as

||x - y||.

Exercise 1. Prove the parallelogram identity

$$||u + v||^{2} + ||u - v||^{2} = 2(||u||^{2} + ||v||^{2})$$

for any $u, v \in \mathbb{R}^n$.

In this course, we often restrict our attention to 2 or 3-dimensional Euclidean space. The equation of a line in \mathbb{R}^3 is given by a function l of one parameter t of the form

$$l(t) = p + tv_{t}$$

where $p, v \in \mathbb{R}^3$. The line passes through the point p and points in the direction v. In terms of the standard coordinates, we have

$$x = x_1 + at,$$

$$y = y_1 + bt,$$

$$z = z_1 + ct.$$

The equation of a plane in \mathbb{R}^3 which passes through (x_0, y_0, z_0) and has a normal vector n = (A, B, C) is given by

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0,$$

or

$$Ax + By + Cz + D = 0.$$

Exercise 2. (1) Find the equation of the line passing through (2, 1, 1) and (0, 1, 0).

(2) Find an equation for the plane perpendicular to the vector (-1, 1, -1) and passing through the point (1, 1, 1).

Date: April 5, 2023.

ALAN DU

- (3) Find an equation for the plane containing the points (2, 1, -1), (3, 0, 2), and (4, -3, 1)
- (4) Find an equation for a line that is parallel to the plane 2x 3y + 5z 10 = 0and passes through the point (-1, 7, 4).

2. Real-Valued Functions of Multiple Variables

A function $\mathbb{R}^n \to \mathbb{R}$ is described in terms of the coordinates of \mathbb{R}^n . One example of a function $\mathbb{R}^2 \to \mathbb{R}$ is $f(x, y) = x^2 - y^2$.

A function $\mathbb{R}^n \to \mathbb{R}^m$ is described by an *m*-tuple of functions $\mathbb{R}^n \to \mathbb{R}$.

The graph of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the set of all points $(x_1, \ldots, x_n, f(x_1, \ldots, x_n))$. In the case n = 2, we can visualize the graph as a subset of \mathbb{R}^3 .

Another way to visualize functions is using level sets. The level set of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the set of all points $(x_1, \ldots, x_n) \in \mathbb{R}^n$ such that $f(x_1, \ldots, x_n) = c$ for some fixed constant c.

Draw level sets and graph of $f(x, y) = x^2 - y^2$.

Exercise 3. Sketch the level curves and graphs of the following functions

- (1) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x y + 2$
- (2) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 + 4y^2$
- (3) $f : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto -xy.$

Definition 2.1. Let $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ and let x_0 be in A or be a boundary point of A. Then we say $\lim_{x\to x_0} f(x) = b$ if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for any $x \in A$ satisfying $0 < ||x - x_0|| < \delta$, we have $||f(x) - b|| < \epsilon$.

An easy way to show that a limit does not exist is to consider the limit along two different paths that approach the limiting point x_0 . If two different values for the limit are found, then the limit does not exist.

Exercise 4. Compute the following limits or show they do not exist.

(1)

(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x^2 + y^2}$$

(3)
$$\lim_{(x,y)\to(0,0)}\frac{\sin(xy)}{y}$$

$$\lim_{(x,y)\to(0,0)}\frac{x^2}{(x^2+y^2)}$$

(4)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(2x) - 2x + y}{x + y}$$