MATH 1B ANALYTICAL W23 RECITATION 9

ALAN DU

1. INNER PRODUCT SPACES

Definition 1.1. Let $F = \mathbb{R}$ or \mathbb{C} , and let V be a vector space over F, then an inner product on V is a function $(\cdot, \cdot) : V \times V \to F$ satisfying for all $x, y, z \in V$, $\alpha, \beta \in F$,

- Linearity in the first argument: $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z),$
- Conjugate symmetry: (x, y) = (y, x),
- Positive definiteness: $(x, x) \ge 0$ for all x, and (x, x) = 0 if and only if x = 0.

A space V together with an inner product is called an inner product space $(V, (\cdot, \cdot))$. Given an inner product space $(V, (\cdot, \cdot))$, the norm is the function $\|\cdot\| : V \to \mathbb{R}$ defined by $\|x\| = \sqrt{(x, x)}$.

Theorem 1.2. (Cauchy-Schwarz inequality)

 $|(x,y)| \le ||x|| ||y||.$

Lemma 1.3. (Triangle inequality)

 $||x + y|| \le ||x|| + ||y||.$

Lemma 1.4. (Parallelogram identity)

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2).$$

Definition 1.5. In general, a norm on a vector space V is a function $\|\cdot\|: V \to \mathbb{R}$ satisfying for all $u, v \in V, \alpha \in F$,

- Homogeneity: $\|\alpha v\| = |\alpha| \|v\|$
- Triangle inequality: $||u + v|| \le ||u|| + ||v||$
- Positive definiteness: $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0.

Not every norm on a vector space comes from an inner product.

2. Orthogonality

In this section we let $(V, (\cdot, \cdot))$ be an inner product space.

Definition 2.1. Two vectors $u, v \in V$ are orthogonal if (u, v) = 0. We write $u \perp v$.

We say v is orthogonal to a subspace $E \subset V$ if v is orthogonal to all vectors $w \in E$. We say subspaces E and F are orthogonal if all vectors in E are orthogonal to F.

To check two subspaces are orthogonal, it suffices to check orthogonality of the basis vectors.

Date: March 2, 2023.

Proposition 2.2. If u, v are orthogonal, then the Pythagorean identity holds:

$$||u + v||^2 = ||u||^2 + ||v||^2.$$

Definition 2.3. A set of vectors $\{v_1, \ldots, v_n\}$ is called orthogonal if $(v_j, v_k) = 0$ for all $j \neq k$.

If, in addition $||v_j|| = 0$ for all j, we call the system orthonormal.

Lemma 2.4. If $\{v_1, \ldots, v_n\}$ are orthonormal, then

$$\left\|\sum_{k=1}^{n} a_k v_k\right\|^2 = \sum_{k=1}^{n} a_k^2.$$

Corollary 2.5. Any orthogonal set of nonzero vectors is linearly independent.

Definition 2.6. An orthogonal (orthonormal) system $\{v_1, \ldots, v_n\}$ which is also a basis of V is called and orthogonal (orthonormal) basis.

Proposition 2.7. Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis, then for any $x = \sum_{k=1}^n a_k v_k$ in V, we have $a_k = (x, v_k)$. Thus

$$x = \sum_{k=1}^{n} (x, v_k) v_k.$$

Definition 2.8. Let E be a subspace of V, we define the orthogonal projection $P_E v$ of a vector v onto E as the vector $w \in E$ such that $v - w \perp E$. w exists and is unique.

Clearly $v \in E$ if and only if $P_E v = v$.

Theorem 2.9. The orthogonal projection $w = P_E v$ minimizes the distance from v to E, i.e. for all $x \in E$, $||v - w|| \le ||v - x||$, and ||v - w|| = ||v - x|| if and only if x = w.

Proposition 2.10. Let v_1, \ldots, v_r be an orthogonal basis in E, then the orthogonal projection $P_E v$ of a vector v is given by

$$P_E v = \sum_{k=1}^r \frac{(v, v_k)}{\|v_k\|^2} v_k$$

The Gram-Schmidt process is used to convert a linearly independent system x_1, \ldots, x_n into an orthogonal system with the same span. We start by setting $v_1 = x_1$ and letting $E_1 = \text{Span}(x_1)$.

Inductively, suppose for some r < n that we have orthogonal vectors v_1, \ldots, v_r such that $\text{Span}(x_1, \ldots, x_r) = \text{Span}(v_1, \ldots, v_r) = E_r$. Define

$$v_{r+1} = x_{r+1} - P_{E_r} x_{r+1}.$$

Then since $x_{r+1} \notin E_r$ since the set is linearly independent, we have $v_{r+1} \neq 0$. It is clear that $\text{Span}(v_1, \ldots, v_{r+1}) = \text{Span}(x_1, \ldots, x_{r+1})$. Also v_{r+1} is orthogonal to v_k for all $k \leq r$.

Continue using this inductive process until we have pairwise orthogonal vectors v_1, \ldots, v_n with $\text{Span}(x_1, \ldots, x_n) = \text{Span}(v_1, \ldots, v_n)$.

We may choose to normalize the vectors v_1, \ldots, v_n , i.e. replace each v_i by $v_i/||v_i||$, to get an orthonormal system.

Theorem 2.11. Any finite-dimensional inner product space V has an orthonormal basis.

Proof. Start with any basis of V and apply the Gram-Schmidt process. \Box