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1. Inner Product Spaces

Definition 1.1. Let F = R or C, and let V be a vector space over F , then an inner
product on V is a function (·, ·) : V × V → F satisfying for all x, y, z ∈ V , α, β ∈ F ,

• Linearity in the first argument: (αx+ βy, z) = α(x, z) + β(y, z),

• Conjugate symmetry: (x, y) = (y, x),
• Positive definiteness: (x, x) ≥ 0 for all x, and (x, x) = 0 if and only if x = 0.

A space V together with an inner product is called an inner product space (V, (·, ·)).
Given an inner product space (V, (·, ·)), the norm is the function ∥ · ∥ : V → R

defined by ∥x∥ =
√

(x, x).

Theorem 1.2. (Cauchy-Schwarz inequality)

|(x, y)| ≤ ∥x∥∥y∥.

Lemma 1.3. (Triangle inequality)

∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Lemma 1.4. (Parallelogram identity)

∥u+ v∥2 + ∥u− v∥2 = 2(∥u∥2 + ∥v∥2).

Definition 1.5. In general, a norm on a vector space V is a function ∥ · ∥ : V → R
satisfying for all u, v ∈ V , α ∈ F ,

• Homogeneity: ∥αv∥ = |α|∥v∥
• Triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥
• Positive definiteness: ∥v∥ ≥ 0 and ∥v∥ = 0 if and only if v = 0.

Not every norm on a vector space comes from an inner product.

2. Orthogonality

In this section we let (V, (·, ·)) be an inner product space.

Definition 2.1. Two vectors u, v ∈ V are orthogonal if (u, v) = 0. We write u ⊥ v.
We say v is orthogonal to a subspace E ⊂ V if v is orthogonal to all vectors w ∈ E.

We say subspaces E and F are orthogonal if all vectors in E are orthogonal to F .

To check two subspaces are orthogonal, it suffices to check orthogonality of the
basis vectors.
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Proposition 2.2. If u, v are orthogonal, then the Pythagorean identity holds:

∥u+ v∥2 = ∥u∥2 + ∥v∥2.
Definition 2.3. A set of vectors {v1, . . . , vn} is called orthogonal if (vj, vk) = 0 for all
j ̸= k.

If, in addition ∥vj∥ = 0 for all j, we call the system orthonormal.

Lemma 2.4. If {v1, . . . , vn} are orthonormal, then∥∥∥∥∥
n∑

k=1

akvk

∥∥∥∥∥
2

=
n∑

k=1

a2k.

Corollary 2.5. Any orthogonal set of nonzero vectors is linearly independent.

Definition 2.6. An orthogonal (orthonormal) system {v1, . . . , vn} which is also a basis
of V is called and orthogonal (orthonormal) basis.

Proposition 2.7. Let {v1, . . . , vn} be an orthonormal basis, then for any x =
∑n

k=1 akvk
in V , we have ak = (x, vk). Thus

x =
n∑

k=1

(x, vk)vk.

Definition 2.8. Let E be a subspace of V , we define the orthogonal projection PEv of
a vector v onto E as the vector w ∈ E such that v − w ⊥ E. w exists and is unique.

Clearly v ∈ E if and only if PEv = v.

Theorem 2.9. The orthogonal projection w = PEv minimizes the distance from v to
E, i.e. for all x ∈ E, ∥v−w∥ ≤ ∥v−x∥, and ∥v−w∥ = ∥v−x∥ if and only if x = w.

Proposition 2.10. Let v1, . . . , vr be an orthogonal basis in E, then the orthogonal
projection PEv of a vector v is given by

PEv =
r∑

k=1

(v, vk)

∥vk∥2
vk.

The Gram-Schmidt process is used to convert a linearly independent system x1, . . . , xn

into an orthogonal system with the same span. We start by setting v1 = x1 and letting
E1 = Span(x1).

Inductively, suppose for some r < n that we have orthogonal vectors v1, . . . , vr such
that Span(x1, . . . , xr) = Span(v1, . . . , vr) = Er. Define

vr+1 = xr+1 − PErxr+1.

Then since xr+1 /∈ Er since the set is linearly independent, we have vr+1 ̸= 0. It is
clear that Span(v1, . . . , vr+1) = Span(x1, . . . , xr+1). Also vr+1 is orthogonal to vk for
all k ≤ r.
Continue using this inductive process until we have pairwise orthogonal vectors

v1, . . . , vn with Span(x1, . . . , xn) = Span(v1, . . . , vn).
We may choose to normalize the vectors v1, . . . , vn, i.e. replace each vi by vi/∥vi∥,

to get an orthonormal system.
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Theorem 2.11. Any finite-dimensional inner product space V has an orthonormal
basis.

Proof. Start with any basis of V and apply the Gram-Schmidt process. □


	1. Inner Product Spaces
	2. Orthogonality

